166. Ironcarbonyl Complexes of 5,6-Dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene Derivatives. Synthesis of Substituted Tricarbonyl(ortho-quinodimethane)iron Complexes and 2-Indanones

by Edia Bonfantini ${ }^{1}$), Jean-Luc Métral ${ }^{2}$), and Pierre Vogel ${ }^{*}$
Institut de chimie organique de l'Université de Lausanne, 2, rue de la Barre, CH-1005 Lausanne

(13.VII.1987)

Abstract

The l-dimethoxymethyl-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene (9) has been prepared. On treatment with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$, the endocyclic double bond $\mathrm{C}(2)=\mathrm{C}(3)$ was coordinated first giving the corresponding exo $-\mathrm{Fe}(\mathrm{CO})_{4}$ complex 10. The latter reacted with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ and afforded cis-heptacarbonyl $-\mu-[(1 R S, 2 S R, 3 R S, 4 S R, 5 R S, 6 S R)$ -$2,3-\eta: C, 5,6, C-\eta$-(1-(dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]diiron (11) as a major product. On heating, 11 underwent deoxygenation of the 7 -oxabicyclo[2.2.1]heptene moiety yielding tricarbonyl[$C, 5,6, C-\eta$-(1-(dimethoxymethyl)-5,6-dimethylidenecyclohexa-1,3-diene)]iron (13). In MeOH , a concurrent, regioselective methoxycarbonylation was observed giving tricarbonyl[$C, 3,4, C-\eta$-(methyl 5 -(dimethoxymethyl)-3,4-dimethylidenecyclohexa-1,5-diene-1-carboxylate) jiron (14), Oxidative removal of the $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety in 13 and 14 did not afford the expected ortho-quinodimethane derivatives but led to CO insertions giving 2,3-dihydro-2-oxo-1 H -indene-4-carbaldehyde (20) and methyl 7-formyl-2,3-dihydro-2-oxo-1 H -indene-5-carboxylate (21), respectively.

Introduction. - The complexation of 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene (1) by transition metals has been described recently [1] [2]. For various metalcarbonyls ($\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os}, \mathrm{Cr}, \mathrm{W}$) it was found that the endocyclic double bond between $\mathrm{C}(2)$ and $\mathrm{C}(3)$ in 1 is always coordinated faster than the exocyclic diene moiety, leading to the isolation of η^{2}-complexes 2 in good yield, provided the complexation reaction was carried out in a non-coordinating solvent. Prolonged exposure of 2 to metalcarbonyls gave the corresponding doubly complexed systems 3 and 4 . Depending on the nature of the metal, of the solvent, and the reaction temperature, condensation products were also formed which arose from a formal [4+2]-cyclodimerization of 2 [3] [4]. On heating the iron double complexes $\mathbf{3 / 4}$ in toluene, the ortho-quinodimethane complex 5 was obtained in 60% yield. Thermolysis of $\mathbf{3 / 4}$ in MeOH afforded instead the carboxylated derivative 6 .

Recently, we reported on the syntheses of the acetal derivatives 7 [5] and 8 [6] and on their Diels-Alder stereo- and regioselectivity. We have now prepared the corresponding triene-acetal 9 and report here on its reaction with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$. We shall show that the corresponding complexes $\mathbf{1 0}$ and $\mathbf{1 1 / 1 2}$ can be prepared readily. The double complexes 11/12 can be transformed to the corresponding (ortho-quinodimethane)iron complexes 13 and 14 from which 18 and 19, respectively, were obtained. Contrary to an earlier report [7], we have found that $\mathrm{Ce}(\mathrm{IV})$ can oxidize the metallic complexe 5 , leading to the

[^0]
$1 Z=H$
$9 \mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$

$2 Z=H$
$10 \mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$

$3 Z=H$
$11 \mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$

$4 Z=H$
$12 \mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$

MeOOC

$6 \mathrm{Z}=\mathrm{H}$
$14 \mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$
$19 \mathrm{Z}=\mathrm{CHO}$

$8 \mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$
$15 Z=H$
$16 \mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$
$20 \mathrm{Z}=\mathrm{CHO}$

$$
\mathrm{M}=\mathrm{Fe}(\mathrm{CO})_{3}
$$

$17 \mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$
$21 \mathrm{Z}=\mathrm{CHO}$

$23 \mathrm{X}=\mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$
$24 \mathrm{X}=\mathrm{CH}_{2} \mathrm{OMs}$,
$\mathrm{Z}=\mathrm{CH}(\mathrm{OMe})_{2}$
formation of 2 -indanone (15). The same oxidative carbonylation process was observed with the substituted derivatives $\mathbf{1 3}$ and $\mathbf{1 4}(\rightarrow \mathbf{1 6}$ and 17 , resp.), thus opening a simple method for the synthesis of rare substituted 2-indanones such as $\mathbf{2 0}$ and $\mathbf{2 1}$.

Results. - The synthesis of triene 9 started with the Diels-Alder addition of maleic anhydride to 2 -(dimethoxymethyl)furan (22) [8] [6b]. The corresponding adduct was reduced by LiAlH_{4} to give the ene-diol 23. Mesylation ($\mathrm{MsCl} /$ pyridine) gave the diester $\mathbf{2 4}$ which furnished 9 on treatment with t-BuOK in anh. dimethylformamide (DMF)/hexamethylphosphoric triamide (HMPT) 6:1.

On heating triene 9 in MeOH with an excess of $\mathrm{Fe}_{2}(\mathrm{CO})_{9}\left(40-70^{\circ}, \mathrm{Ar}\right)$, the monocomplex 10 was formed first which was then transformed into a mixture of the dicomplexes 11 and 12. Under these conditions, 10 gave also some products of condensation [9], and 11/12 were decomposed into a mixture of the substituted ortho-quinodimethane complexes 13 and 14. The proportions of $10 / 11 / 12 / 13 / 14$ varied with the concentrations of 9 and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$, the temperature of the reaction, and the flow of Ar. These complexes were isolated by column chromatography on silica gel and identified easily by their mode of formation, their spectral data, and their elemental analyses (see Exper. Part).

The exo configuration of the $\mathrm{Fe}(\mathrm{CO})_{4}$ moiety in $\mathbf{1 0 - 1 2}$ was established by the vicinal coupling constant ${ }^{3} \mathrm{~J}<1$ Hz observed between the bridgehead proton $\mathrm{H}-\mathrm{C}(4)$ and the adjacent olefinic proton $\mathrm{H}-\mathrm{C}(3)$ [1] [2] [10]. The distinction between the exo- and endo- η^{4}-dienc $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes 11 and 12 was based on the observation of a long-range coupling constant ${ }^{4} J$ of 0.8 Hz between $\mathrm{H}-\mathrm{C}(4)$ and the methylidene proton trans with respect to $\mathrm{C}(5)=\mathrm{C}(6)$ in the $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 11 . The latter coupling constant was $<0.4 \mathrm{~Hz}$ for the endoisomer 12 [11].

On heating pure 11 in toluene $\left(95^{\circ}, 80 \mathrm{~min}\right)$, the ortho-quinodimethane complex 13 was obtained in 53% yield (isolated). Hydrolysis of 13 (THF/ $\mathrm{H}_{2} \mathrm{O} 1: 1$, Nafion $-\mathrm{H}^{+}, 20^{\circ}$, 1 d) gave the corresponding aldehyde 18 (93%). On heating 11 in $\mathrm{MeOH}\left(50-60^{\circ}\right)$, a $14: 1$ mixture of $13(63 \%)$ and of the carboxylated derivative $14(4.4 \%)$ was obtained. Under bubbling of Ar , the thermal decomposition of 11 was complete after 5 d at 60° in MeOH ,
whereas under 2.5 atmosphere of CO , the thermal decomposition of 11 was incomplete (ca. 80%) after 5 d at 60° in MeOH (see Exper. Part). No trace of an isomer of $\mathbf{1 4}$ could be detected in the crude reaction mixture, thus demonstrating the high regioselectivity of the methoxycarbonylation reaction $11 \rightarrow \mathbf{1 4}$. The proportion of $\mathbf{1 4}$ was increased by applying a pressure of CO. Hydrolysis of $\mathbf{1 4}$ by the same procedure as for 13 yielded 19.

All our attempts to generate the uncoordinated ortho-quinodimethanes by oxidation of the metal in complexes 13 and 14 failed. On heating with $\mathrm{Me}_{3} \mathrm{NO}$ [12], decomposition of 13 and 14 was observed as a slow reaction. In the presence of an excess of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}(\mathrm{NO})_{6}$ in acetone [13] at 20°, however, $\mathbf{1 3}$ gave a mixture of products from which the 2 -indanone derivative 20 was isolated in 65% yield. Control experiments confirmed that the primary product of reaction was the acetal 16. Nevertheless, 16 was an unstable compound under our workup conditions, giving the corresponding carbaldehyde 20. On treatment of complex $\mathbf{1 8}$ with Ce(IV) salt, $\mathbf{2 0}$ was also formed in 69% yield. Under the same conditions, complex 14 afforded the disubstituted 2-indanone derivative 21, arising probably from acetal 17 which, as in the case of 16 , is expected to be hydrolysed rapidly under our workup conditions.

An earlier report [7] stated that the unsubstituted tricarbonyl(ortho-quinodimethane)iron 5 was inert toward oxidizing agents such as $\mathrm{Ce}(\mathrm{IV})$ salts. We have found, however, that the treatment of 5 (prepared form 1,4-dibromo-2,3-dimethylbenzene, [14]) with an excess of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$ in acetone at 20° gave pure 2 -indanone (15) in 90% isolated yield. The reaction $5 \rightarrow 15$ has been reported before [15] [16] to be induced by AlCl_{3}. Under the latter conditions, the yield of 15 was only moderate in our hands. Furthermore, when derivatives 13 and 14 were treated with AlCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, very complicated mixtures of products were obtained in which only traces of the corresponding 2-indanones 20 and 21 could be detected.

Discussion. - At this stage of our investigations, no limiting mechanisms can be retained for the deoxygenation $11 \rightarrow \mathbf{1 3}$ and the carboxylation $11 \rightarrow \mathbf{1 4}$. The deoxygenation of 7-oxabicyclo[2.2.1]hepta-2,5-diene derivatives complexed to $\mathrm{Fe}(\mathrm{CO})_{4}$ is a known reaction [1] [17]. The concomitant carboxylation of the resulting cyclohexadiene product was first observed for the unsubstituted dicomplex 3 [1]. The high regioselectivity observed for reaction $\mathbf{1 1 \rightarrow 1 4}$ is noteworthy but does not authorize to limit the number of mechanistic hypotheses. Since reactions $\mathbf{1 1 \rightarrow 1 3}$ and $\mathbf{1 1 \rightarrow 1 4}$ are both retarded on applying a CO pressure, it is probable that the first step of these two reactions implies the loss of a CO molecule from the $\mathrm{Fe}(\mathrm{CO})_{4}$ moiety in 11 , followed by an oxidative addition of the metal into one of the two allylic $\mathrm{C}-\mathrm{O}$ bonds [18] [19].

Tricarbonyl(1,3 -diene)iron derivatives are known to give the corresponding cyclo-pent-3-one derivatives on treatment with a strong Lewis acid such as AlCl_{3} [15] [16] [20]. Anhydrous aluminium salts help the CO insertion reaction [21]. Under oxidizing conditions, some allyliron complexes have been reported to undergo CO insertion [22]. It is not clear yet whether it is the Lewis acid character of the Ce(IV) salt or its oxidation potential which is responsible of the smooth CO insertions $5 \rightarrow \mathbf{1 5}, \mathbf{1 3} \rightarrow \mathbf{1 6}$, and $\mathbf{1 8} \rightarrow \mathbf{2 0}$. A clean CO insertion into cyclopentadienyl(ortho-quinodimethane)cobalt to give 2-indanone has been reported by Hersch and Bergman [23].

Conclusion. - An access to rare 4 -substituted and 4,6-disubstituted 2 -indanones has been developed from the ironcarbonyl complexes of a l-substituted 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene derivative.

We thank F. Hoffmann-La Roche \& Co. AG, Basel, the Swiss National Science Foundation, and the Fonds Herbette, Lausanne, for generous financial support.

Experimental Part

General. See [6b].

/(IRS,4SR,5SR,6RS)-I-(Dimethoxymethyl)-7-oxabicyclo[2.2.1]hept-2-ene-5-exo,6-exo-dimethyl] Dimethanesulfonate (24). Methanesulfonyl chloride ($17 \mathrm{ml}, 218 \mathrm{mmol}$) was added dropwise to a stirred mixture of 1-(dimethoxymethyl)-7-oxabicyclo[2.2.1]hept-2-ene-5-exo,6-exo-dimethanol (23 [6b]; $10 \mathrm{~g}, 43 \mathrm{mmol}$) and anh. pyridine (29 ml) at 0° and under N_{2}. After stirring at 0° for 1 h , the mixture was stored in a refrigerator at -10° for 4 d . The mixture was then poured into vigourously stirred ice-cold $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{l})$. The precipitate was collected by filtration and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$. After washing with $\mathrm{H}_{2} \mathrm{O}$ and drying (MgSO_{4}), the solvent was evaporated. The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -20°, yielding $10.06 \mathrm{~g}(60 \%)$ of colourless crystals. M.p. $118-120^{\circ}$ (dec.). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3060,2970,2940,2840,1360,1340,1175,1105,1080,970,945,855,805$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 6.37 (br. $s, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3)$); 4.9 (br. $s, \mathrm{H}-\mathrm{C}(4)$); $4.78-3.9$ ($m, \mathrm{CH}-\mathrm{C}(1)$, $\left.\mathrm{CH}_{2}-\mathrm{C}(5), \mathrm{CH}_{2}-\mathrm{C}(6)\right) ; 3.53\left(\mathrm{~s}, 2 \mathrm{CH}_{3} \mathrm{O}\right) ; 3.0\left(\mathrm{~s}, 2 \mathrm{CH}_{3} \mathrm{~S}\right) ; 2.51-2.02(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 137.1\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=178, \mathrm{C}(2)\right) ; 135.3\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=177, \mathrm{C}(3)\right) ; 103.7\left(d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=159, C \mathrm{H}-\mathrm{C}(1)\right)$; $91.4(m, \mathrm{C}(1)) ; 80.2\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=165, \mathrm{C}(4)\right) ; 69.5,67.3\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=152,2 \mathrm{CH}_{2} \mathrm{O}\right) ; 57.1,56.6(2 q d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=142,{ }^{3} J(\mathrm{C}, \mathrm{H})=5,2 \mathrm{CH}_{3} \mathrm{O}\right) ; 41.7,41.67\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=140, \mathrm{C}(5), \mathrm{C}(6)\right) ; 37.5,37.3\left(2 q,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=139,2\right.$ $\mathrm{CH}_{3} \mathrm{~S}$). CI-MS $\left(\mathrm{CH}_{4}\right): 356\left(2, \mathrm{M}^{+}+\mathrm{H}-\mathrm{OCH}_{3}\right), 258(10), 111$ (12), 41 (37), 29 (100). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{9} \mathrm{~S}_{2}$ (386.341): C 40.41, H 5.74; found: C 40.38, H 5.62.

I-(Dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo/2.2.1/hept-2-ene (9). 1 -BuOK. ($18 \mathrm{~g}, 160 \mathrm{mmol}$) was added portionwise under N_{2} to a stirred mixture of $24(6 \mathrm{~g}, 15.5 \mathrm{mmol})$ and anh. DMF/HMPT 6:1 at 0°. After stirring at 0° for $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added and the mixture extracted with pentane ($200 \mathrm{ml}, 5$ times). The org. extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was distilled off (Vigreux column) and the residue bulb-to-bulb distilled (Büchi), giving $1.96 \mathrm{~g}(65 \%)$ of a colourless liquid. B.p. $90^{\circ} / 0.5$ Torr. UV (isooctane): 233 (9000), 229 (sh, 9100), 223 (sh, 9700), 205 (14200). UV ($95 \% \mathrm{EtOH}$): 228 (8700), 223 (sh, 8600), 220 (sh, 9400), 204 (13100). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3050,2990,2960,2940,2910,2840,1185,1150,1105,1085,1050,1035,985,940,930,890$, 820. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.52-6.43\left(m,{ }^{3} J(\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3))=5.6,{ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4))=1.6\right.$, $\left.{ }^{4} J(\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(4))=0.5,{ }^{5} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5))=0.6, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3)\right) ; 5.36,5.26,5.25,5.08\left(4 s, \mathrm{CH}_{2}=\mathrm{C}(5)\right.$, $\left.\mathrm{CH}_{2}=\mathrm{C}(6)\right) ; 5.18($ br. $s, \mathrm{H}-\mathrm{C}(4)) ; 4.83\left(s, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right) ; 3.6,3.54\left(2 s, 2 \mathrm{CH}_{3} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 145.6$ $(m, \mathrm{C}(5)) ; 144.1(m, \mathrm{C}(6)) ; 136.2,135.2\left(2 \mathrm{dm},{ }^{1} J(\mathrm{C}, \mathrm{H})=179,{ }^{2} J(\mathrm{C}, \mathrm{H})=3.5, \mathrm{C}(2), \mathrm{C}(3)\right) ; 103.7(\mathrm{dm}, \mathrm{CH}-\mathrm{C}(1))$; 102.8, $101.0\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=158, C \mathrm{H}_{2}=\mathrm{C}(5), C \mathrm{H}_{2}=\mathrm{C}(6)\right) ; 92.0(\mathrm{~m}, \mathrm{C}(1)) ; 82.5\left(d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=166, \mathrm{C}(4)\right) ; 55.4$, $55.36\left(2 q d,{ }^{1} J(\mathrm{C}, \mathrm{H})=144,{ }^{3} J(\mathrm{C}, \mathrm{H})=5,2 \mathrm{CH}_{3} \mathrm{O}\right) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{CH}_{4}\right): 195\left(5, M^{+}+\mathrm{H}\right), 163(15), 135(26), 131(11), 75$ (50), 57 (100). Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ (194.232): $\mathrm{C} 68.02, \mathrm{H} 7.27$; found: C $67.95, \mathrm{H} 7.27$.

Complexation of 9 with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}($ Method A$) . \mathrm{Fe}_{2}(\mathrm{CO})_{9}(13.4 \mathrm{~g}, 36.8 \mathrm{mmol})$ was added portionwise to a soln. of $9(4 \mathrm{~g}, 20.6 \mathrm{mmol})$ in $\mathrm{MeOH}(110 \mathrm{ml})$ and heated to 70° under Ar bubbling. After 26 h , the mixture was filtered and the solvent evaporated. The residue was filtered through a short column of silica gel (AcOEt/petroleum ether 1:4) and then chromatographed on silica gel (type Column, Lobar, AcOEt ipetroleum ether 1:5), yielding three Fractions A, B, and C. Fraction A was chromatographed on a silica-gel column (type C, Lobar, AcOEt p petroleum ether 1:15) giving successively fractions containing 11, 10, and 13. Fraction B was chromatographed on a silica-gel column (type B, Lobar, AcOEt/petroleum ether 1:5) giving successively fractions containing 13 and 14. All the fractions were recrystallized from MeOH at -20°. Complex 12 was present in less than 1% in the final reaction mixture. Under the conditions used here, it probably isomerized into 11 or/and was transformed into $\mathbf{1 3} / \mathbf{1 4}$.

Tetracarbonyl/(1/RS,2SR,3RS,4RS)-2,3-ท-(1-(dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene) IIron (10). Yield $470 \mathrm{mg}(6.3 \%$), yellow needles. M.p. 68-69 $. ~ U V ~(i s o o c t a n e): ~ 264 ~(s h, ~ 8500), ~ 216 ~(s h, ~$ 35400), 205 (36900). UV ($95 \% \mathrm{EtOH}$): 265 (sh, 8200), 215 (sh, 34400), 206 (36000). IR (CHCl_{3}): 3010, 2970, 2940, 2840, 2095, 2020, 2000, 1995, 1100, 1080. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.45,5.43,5.33,5.10\left(4 s, \mathrm{CH}_{2}-\mathrm{C}(5)\right.$, $\left.\mathrm{CH}_{2}-\mathrm{C}(6)\right) ; 4.72$ (br. $\mathrm{H}-\mathrm{C}(4)$); $4.54(s, \mathrm{CH}-\mathrm{C}(1)) ; 3.60,3.58\left(2 s, 2 \mathrm{CH}_{3} \mathrm{O}\right) ; 3.21,3.12\left(2 d,{ }^{3} J(\mathrm{H}-\mathrm{C}(2)\right.$, $\mathrm{H}-\mathrm{C}(3))=5.2, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 210.2(s, \mathrm{CO}) ; 146.5,144.3(2 \mathrm{~m}, \mathrm{C}(5), \mathrm{C}(6)) ; 105.0$ $\left(d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=161, \mathrm{CH}-\mathrm{C}(1)\right) ; 104.2,102.2\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(5), C \mathrm{H}_{2}=\mathrm{C}(6)\right) ; 89.9(m, \mathrm{C}(1)) ; 82.9$ $\left(d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=166, \mathrm{C}(4)\right) ; 57.6,56.6\left(q d,{ }^{1} J(\mathrm{C}, \mathrm{H})=143,{ }^{3} J(\mathrm{C}, \mathrm{H})=5,2 \mathrm{CH}_{3} \mathrm{O}\right) ; 56.5,54.5\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=174\right.$, $\mathrm{C}(2), \mathrm{C}(3))$. MS (70 eV): 278 (100), $250(49), 235(23), 220(46), 218(55), 205(18), 203(18), 190(55), 188(59), 162$ (58), 160 (35), 147 (56), 132 (28), 91 (19), 75 (24). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FeO}_{7}$ (362.122): C 49.75, H 3.90; found: C 49.88 , H 3.90.
cis-Heptacarbonyl- $\mu-[(1 \mathrm{RS}, 2 \mathrm{SR}, 3 \mathrm{RS}, 4 \mathrm{SR}, 5 \mathrm{RS}, 6 \mathrm{SR})-2,3-\eta:$ C,5,6,C- $\eta-(1-($ dimethoxymethyl $)-5,6$-dimeth -ylidene-7-oxabicyclo[2.2.1]hept-2-ene)]diiron (11). Yield 145 mg (1.4%), yellow crystals. M.p. $99-100^{\circ}$. UV (isooctane): 300 (7900). IR (KBr): 3020, 2970, 2940, 2890, 2840, 2090, 2030, 2020, 2010, 1995, 1980, 1950, 1450, $1400,1330,1215,1190,1150,1110,1075,980,950,935,835 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.79,4.68(2 s$, $\mathrm{CH}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)) ; 3.60,3.58\left(2 s, 2 \mathrm{CH}_{3} \mathrm{O}\right) ; 3.63,3.48\left(2 d,{ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(2))=5, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(2)\right) ; 2.21(d d$, ${ }^{2} J=2.5,{ }^{4} J(\mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}=\mathrm{C}(5))=0.8, \mathrm{H}-\mathrm{C}=\mathrm{C}(5)$ trans to $\left.\mathrm{C}(5)=\mathrm{C}(6)\right) ; 2.04\left(d,{ }^{2} J=2.5, \mathrm{H}-\mathrm{C}=\mathrm{C}(6)\right.$ trans to $\mathrm{C}(5), \mathrm{C}(6)) ; 0.54,0.47\left(2 d,{ }^{2} J=2.5, \mathrm{H}-\mathrm{C}=\mathrm{C}(5), \mathrm{H}-\mathrm{C}=\mathrm{C}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 211.2,209.0(2 s)$; $111.9,110.8(2 s, \mathrm{C}(5), \mathrm{C}(6)) ; 104.3\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C \mathrm{H}-\mathrm{C}(1)\right) ; 89.8(s, \mathrm{C}(1)) ; 82.2\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=170, \mathrm{C}(4)\right) ; 57.6$, $57.3\left(2 d,{ }^{i} J(\mathrm{C}, \mathrm{H})=170, \mathrm{C}(2), \mathrm{C}(3)\right) ; 58.3,56.2\left(2 q,{ }^{i} J(\mathrm{C}, \mathrm{H})=142, \mathrm{CH}_{3} \mathrm{O}\right) ; 34.1,33.0\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=162\right.$, $\left.\mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right)$. CI-MS $\left(\mathrm{CH}_{4}\right): 502\left(15, \mathrm{M}^{+}\right), 446(58), 418(100), 390(30), 362(30), 334$ (33), 306 (51). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Fe}_{2} \mathrm{O}_{10}$ (501.994): C 43.07, $\mathrm{H} \mathrm{2.81}$; found: C 42.87, H 2.79.

Tricarbonyl/ C,5,6, C- η-(1-(dimethoxymethyl)-5,6-dimethylidenecyclohexa-1,3-diene)]iron (13). Yield 1.57 g (24%), yellow crystals. M.p. $70-73^{\circ}$. UV ($95 \% \mathrm{EtOH}$): 255 (7900), 199 (33800). IR (CHCl_{3}): 3010, 2965, 2940, $2840,2055,1995,1470,1350,1120,1075,1060 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.67-7.35(\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3)$, $\mathrm{H}-\mathrm{C}(4)) ; 5.39(s, \mathrm{CH}-\mathrm{C}(1)) ; 3.43,3.38\left(2 s, 2 \mathrm{CH}_{3} \mathrm{O}\right) ; 2.78,2.47\left(2 d,{ }^{2} J=3.6, \mathrm{H}-\mathrm{C}=\mathrm{C}(5), \mathrm{H}-\mathrm{C}=\mathrm{C}(6)\right.$ trans to $\mathrm{C}(5), \mathrm{C}(6)) ; 0.25,0.07\left(2 d,{ }^{2} J=3.6, \mathrm{H}-\mathrm{C}=\mathrm{C}(5), \mathrm{H}-\mathrm{C}=\mathrm{C}(6)\right.$ cis $) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl} 2\right): 211.0(\mathrm{~s}, \mathrm{CO})$; $139.2(\mathrm{~m}, \mathrm{C}(1)) ; 134.2\left(\mathrm{dm},{ }^{1} J(\mathrm{C}, \mathrm{H})=165, \mathrm{C}(2)\right) ; 103.2\left(\mathrm{dm},{ }^{1} J(\mathrm{C}, \mathrm{H})=160,{ }^{3} J(\mathrm{C}, \mathrm{H})=5, C \mathrm{H}-\mathrm{C}(1)\right) ; 100.2,100.1$ $(2 s, \mathrm{C}(5), \mathrm{C}(6)) ; 54.5,53.8\left(2 q d,{ }^{1} J(\mathrm{C}, \mathrm{H})=143,{ }^{3} J(\mathrm{C}, \mathrm{H})=5,2 \mathrm{CH}_{3} \mathrm{O}\right) ; 36.7,33.3\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C=\mathrm{C}(5)\right.$, $C=\mathrm{C}(6)) . \operatorname{MS}(70 \mathrm{eV}): 318\left(13, M^{+}\right), 262(17), 234(33), 216(13), 204(15), 188(17), 174(100), 132(54), 115(30)$, 103 (43), 91 (30), 77 (44). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FeO}_{5}$ (318.112): C 52.86, H 4.44; found: C 52.70, H 4.36.

Tricarbonyl/ C,3,4,C- η-(methyl-5-(dimethoxymethyl)-3,4-dimethylidenecyclohexa-1,5-diene-1-carboxylate)]iron (14). Yield $116 \mathrm{mg}(1.5 \%)$, yellow crystals. M.p. $81-82^{\circ}$. UV (isooctane): 386 (3200), 266 (13000), 222 (sh, 26800), 202 (43000). $1 \mathrm{R}(\mathrm{KBr}): 3000,2950,2830,2040,1980,1960,1710,1430,1360,1290,1240,1225,1130,1070$, 1050. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.30,8.13(2 s, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(6)) ; 5.39(s, \mathrm{CH}-\mathrm{C}(5)) ; 3.97\left(s, \mathrm{COOCH}_{3}\right) ; 3.44$, $3.40\left(2 s, 2 \mathrm{CH}_{3} \mathrm{O}\right) ; 2.89,2.50(2 d, J=3.5) ; 0.32,0.15(2 d, J=3.5, \mathrm{H}-\mathrm{C}=\mathrm{C}(3), \mathrm{H}-\mathrm{C}=\mathrm{C}(4)$ cis to $\mathrm{C}(3), \mathrm{C}(4))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3},-30^{\circ}\right): 215.6,206.6,205.4$ ($3 \mathrm{br} . s, \mathrm{CO}$); $166.1\left(s, \mathrm{CH}_{3} \mathrm{OOC}\right) ; 139.4,125.6$ ($2 d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=166, \mathrm{C}(2), \mathrm{C}(6)\right) ; 137.6,128.4(2 s, \mathrm{C}(1), \mathrm{C}(5)) ; 101.8,96.8(2 s, \mathrm{C}(3), \mathrm{C}(4)) ; 101.7\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=161\right.$, $\mathrm{CH}-\mathrm{C}(5)) ; 53.8,53.4\left(2 d q,{ }^{1} J(\mathrm{C}, \mathrm{H})=144,{ }^{3} J(\mathrm{C}, \mathrm{H})=5,2 \mathrm{CH}_{3} \mathrm{O}\right) ; 52.4\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=147, \mathrm{COOCH}_{3}\right) ; 36.7,33.5$ $\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(3), \mathrm{CH}_{2}=\mathrm{C}(4)\right) . \mathrm{MS}(70 \mathrm{eV}): 376(29), 348(23), 320(15), 292(73), 262(81), 232(65)$, 204 (100), 174 (79), 146 (55), 131 (47), 115 (49), 103 (50). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FeO}_{7}(376.144)$: C 51.09, H 4.29; found: C 51.13, H 4.18.

Complexation of 9 with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}($ Method $B)$. A mixture of $9(2.3 \mathrm{~g}, 11.84 \mathrm{mmol})$, anh. $\mathrm{MeOH}(130 \mathrm{ml})$, and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}(7.5 \mathrm{~g}, 20.6 \mathrm{mmol})$ was stirred at 20° under vigourous bubbling with $\mathrm{Ar} . \mathrm{Fe}_{2}(\mathrm{CO})_{9}$ (twice $3.5 \mathrm{~g}, 9.6 \mathrm{mmol}$) was added after 20 h and 28 h of reaction. After 50 h at 20°, the mixture was filtered on a short column of silica gel (AcOEt/petroleum ether $1: 8$). The yellow fraction was collected and evaporated. After addition of acetone (5 ml) and $1 \mathrm{NHCl}(3 \mathrm{ml})$, the mixture was allowed to stay at 20° for 15 h . This acidic treatment was required to hydrolyze 13 quantitatively into 18 . Under these conditions, acetals $9-12$ were not hydrolyzed. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{ml}, 3\right.$ times). After drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated and the residue separated by column chromatography on silica gel (Lobar, AcOEt/petroleum ether $1: 20$), yielding successively $690 \mathrm{mg}(11.6 \%)$ of $11,180 \mathrm{mg}$, (4.2%) of $10,529 \mathrm{mg}(8.9 \%)$ of 12 and $357 \mathrm{mg}(11.1 \%)$ of 18 .
trans-Heptacarbonyl- $\mu-/(1 \mathrm{RS}, 2 \mathrm{SR}, 3 \mathrm{RS}, 4 \mathrm{SR}, 5 \mathrm{SR}, 6 \mathrm{RS})-2,3-\eta: \quad \mathrm{C}, 5,6, \mathrm{C}-\eta$ - (1-(dimethoxymethyl)-5,6-di-methylidene-7-oxabicyclo[2.2.1]hept-2-ene)]diiron (12). Yellow crystals. M.p. 82-83 ${ }^{\circ}$. UV (isooctane): 310 (6820). IR (KBr) : 3020, 2950, 2850, 2090, 2040, 2020, 2010, 1990, 1975, 1965, 1445, 1390, 1360, 1330, 1210, 1190, 1080, 970, $935,910 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $5.15,4.67(2 s, \mathrm{CH}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)) ; 3.66,3.62\left(2 s, 2 \mathrm{CH}_{3} \mathrm{O}\right) ; 3.60,3.48(2 d$, $\left.{ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(2))=5, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(2)\right) ; 2.43,2.16\left(2 d,{ }^{2} J=3, \mathrm{H}-\mathrm{C}=\mathrm{C}(5), \mathrm{H}-\mathrm{C}=\mathrm{C}(6)\right.$ trans to $\left.\mathrm{C}(5), \mathrm{C}(6)\right)$; $0.74,0.69\left(2 d,{ }^{2} J=3, \mathrm{H}-\mathrm{C}=\mathrm{C}(5), \mathrm{H}-\mathrm{C}=\mathrm{C}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 209.6\left(s, \mathrm{CO}\right.$ of $\mathrm{Fe}(\mathrm{CO})_{3}$ and $\left.\mathrm{Fe}(\mathrm{CO})_{4}\right) ; 118.6,117.6(2 s, \mathrm{C}(5), \mathrm{C}(6)) ; 105.8\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C \mathrm{H}-\mathrm{C}(1)\right) ; 92.0(s, \mathrm{C}(1)) ; 83.0\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=170\right.$, $\mathrm{C}(4)) ; 61.2,59.9\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=174, \mathrm{C}(2), \mathrm{C}(3)\right) ; 58.0457 .17\left(2 q,{ }^{1} J(\mathrm{C}, \mathrm{H})=143,2 \mathrm{CH}_{3} \mathrm{O}\right) ; 34.37,34.03(2 t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=162, \mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{CH}_{4}\right): 474\left(4, M^{+-}-\mathrm{CO}\right), 446(40), 418$ (100), $390(11), 362$ (15), 334 (21), 306 (41). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Fe}_{2} \mathrm{O}_{10}$ (501.994): C 43.07, H 2.81; found: C 42.89, H 2.79.

Thermal Decomposition of $\mathbf{1 1}$ in an Open Flask. A. A soln. of $11(76 \mathrm{mg}, 0.15 \mathrm{mmol})$ in toluene (6 ml) was heated to 95° for 80 min . After solvent evaporation and purification of the residue by column chromatography on silica gel (5 g , AcOEt/petroleum ether 1:7), $30 \mathrm{mg}(53 \%$) of 13 were obtained. B. A soln. of 11 ($107 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{ml})$ was heated to 50° for 5 d , then to 60° for 1 d , under bubbling of Ar. After filtration on Florisil (AcOEt/petroleum ether 1:4), a 15:1 mixture 13/14 was obtained. Chromatography on silica gel (Lobar, column
type B, AcOEt/petroleum ether 1:7) gave a Ist fraction containing $30 \mathrm{mg}(63 \%)$ of $\mathbf{1 3}$ and a 2 nd fraction yielding $2.5 \mathrm{mg}(4.4 \%)$ of 14.

Thermal Decomposition of 11 in a Sealed Vessel. A soln. of 11 ($253 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{MeOH}(45 \mathrm{ml})$ was heated to 60° for 5 d in a sealed, round-bottom flask. The mixture was filtered on a short column of silica gel (AcOEt/petroleum ether 1:4). After solvent evaporation, the residue was purified by medium-pressure chromatography on silica gel (Lobar, column type B, AcOEt/petroleum ether 1:10), yielding successively 90 mg (56%) of $\mathbf{1 3}$ and 31 mg (16%) of 14. Product ratio $13 / 14$ 3.5:1.

Thermal Decomposition of 11 under CO Pressure. A soln. of 11 ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{MeOH}(19 \mathrm{ml})$ was degassed under vacuum and then pressurized with $C O(2.5 \mathrm{~atm})$. After heating to 60° for 5 d , the mixture was filtered on a short column of silica gel (AcOEt/petroleum ether 1:4) and purified by medium-pressure chromatography on silica gel (Lobar, column type A, AcOEt/petroleum ether 1:15). The Ist fraction yielded 20.5 mg (20.4%) of 11. A 2nd fraction gave $1 \mathrm{mg}(1.8 \%)$ of 18 (derived from hydrolysis of 13). A 3rd fraction yielded 6 mg (7.9%) of 14. Product ratio $\mathbf{1 8} / \mathbf{1 4 0 . 2 3 : 1}$. Complex 14 was less sensitive than 13 toward acid-catalyzed hydrolysis of the acetal function (the ester group in 14 destabilizes the benzyl-cation intermediate).

Tricarbonyl/ C,5,6, C- η-(5,6-dimethylidenecyclohexa-1,3-diene-1-carbaldehyde) Jiron (18). A mixture of 13 ($202 \mathrm{mg}, 0.63 \mathrm{mmol}$), THF/ $\mathrm{H}_{2} \mathrm{O} 1: 1(3 \mathrm{ml})$ and Nafion $-\mathrm{H}^{+}(18 \mathrm{mg})$ was stirred at 20° for 1 d . After filtration, the solvent was evaporated and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. After drying $\left(\mathrm{MgSO}_{4}\right)$, the solyent was evaporated and the residue purified by filtration through a short column of silica gel ($\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{l}: 50$). Recrystallization from MeOH at -20° yielded 159 mg (93%) of yellow-orange crystals. M.p. $67-68^{\circ}$. UV (dioxane): 397 (4100), 304 (7900), 269 (sh, 10800), 214 (34500). IR (KBr): 3070, 2840, 2740, 2040, 1990, 1970, 1690, $1540,1470,1230,1170,1090,960,900,780 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.17(s, \mathrm{CHO}) ; 7.93(d, J=7.5$, $\mathrm{H}-\mathrm{C}(2)) ; 7.85(d, J=9, \mathrm{H}-\mathrm{C}(4)) ; 7.54(d d, J=7.5,9, \mathrm{H}-\mathrm{C}(3)) ; 3.90,2.48(2 d, J=3.5,2 \mathrm{H}) ; 0.34,0.14$ (2d, $J=3.5,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 209.5(\mathrm{CO}) ; 191.4\left(d,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=174, \mathrm{CHO}\right) ; 141.3,138.9(2 d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=160, \mathrm{C}(2), \mathrm{C}(4)\right) ; 126.8\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=165, \mathrm{C}(3)\right) ; 136.8(s, \mathrm{C}(1)) ; 98.7,97.9(2 s, \mathrm{C}(5), \mathrm{C}(6)) ; 36.5,34.2(2 t$, $\left.{ }^{\prime} J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right)$. MS (70 eV): 272 (31), 244 (27), 216 (44), 189 (82), 160 (20), 133 (84), 103 (28), 77 (27). Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FeO}_{4}$ (271.919): C $52.98, \mathrm{H} 2.96$; found: $\mathrm{C} 52.94, \mathrm{H} 2.94$.

Tricarbonyl/ C,3,4, C- - -(methyl-5-formyl-3,4-dimethylidenecyclohexa-I,5-diene-I-carboxylate) Jiron (19). Same procedure as for 18, starting with 14. Yield 90%, yellow-orange crystals. M.p. 123-124 . UV (dioxane): 420 (3300), 312 (sh, 4600), 268 (11200), 222 (28800), 214 (28700). IR (KBr): 3060, 3000, 2960, 2820, 2740, 2060, 1980, $1720,1690,1440,1310,1240,1215,1100,1000,765 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.18(s, \mathrm{CHO}) ; 8.60,8.49(2 s$, $\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(6)) ; 4.02\left(s, \mathrm{CH}_{3} \mathrm{OOC}\right) ; 4.00,2.49\left(2 d,{ }^{2} J=3.6, \mathrm{H}-\mathrm{C}=\mathrm{C}(3), \mathrm{H}-\mathrm{C}=\mathrm{C}(4)\right.$, trans to $\left.\mathrm{C}(3), \mathrm{C}(4)\right) ; 0.38$, $0.30(2 d, J=3.6,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 209.0(s, \mathrm{CO}), 191.3\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=178, \mathrm{CHO}\right) ; 165.2(s$, $\left.\mathrm{COOCH}_{3}\right) ; 145.2,138.3\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=164, \mathrm{C}(2), \mathrm{C}(6)\right) ; 136.8,128.7(2 s, \mathrm{C}(1), \mathrm{C}(5)) ; 100.5,96.7(2 s, \mathrm{C}(3), \mathrm{C}(4))$; $52.8\left(q, \mathrm{CH}_{3} \mathrm{O}\right) ; 37.3,35.7\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C \mathrm{H}_{2}=\mathrm{C}(3), C \mathrm{H}_{2}=\mathrm{C}(4)\right)$. $\mathrm{MS}(70 \mathrm{eV}): 330(30), 302(30), 274(43), 246$ (84), 218 (61), $216(72), 188(75), 160(23), 132(53), 103(33), 77(42), 56(100)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FeO}_{6}(330.075)$: C 50.94 , H 3.05 ; found: C 51.10, H 3.08 .

2-Indanone (15). Anh. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}(990 \mathrm{mg}, 1.8 \mathrm{mmol})$ was added portionwise to a stirred soln. of $5(0.2$ g, 0.82 mmol$)$ in anh. acetone $(30 \mathrm{ml})$. After $50 \mathrm{~min}, 145 \mathrm{mg}(0.26 \mathrm{mmol})$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$ were added and after $70 \mathrm{~min}, 100 \mathrm{mg}$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$. After 100 min of reaction and addition of $\mathrm{H}_{2} \mathrm{O}(120 \mathrm{ml})$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{ml}, 4\right.$ times). The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent evaporated, and the residue purified by filtration through a short column of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 98 \mathrm{mg}(90 \%)$ of white crystals. M.p. 54-55 ([24]: 54-56 $)$.

2,3-Dihydro-2-oxo-/ H -indene-4-carbaldehyde (20). Anh. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}(950 \mathrm{mg}, 1.73 \mathrm{mmol})$ was added portionwise to a stirred soln. of $13(250 \mathrm{mg}, 0.78 \mathrm{mmol})$ in anh. acetone (40 ml) at 20°. After 45 min and 60 min of stirring at $20^{\circ}, 170 \mathrm{mg}(0.31 \mathrm{mmol})$ and $160 \mathrm{mg}(0.29 \mathrm{mmol})$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$, respectively, were added. After 95 min , pentane (100 ml) was added and the mixture filtered. The solution was washed with $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{ml})$, the aq. phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($100 \mathrm{ml}, 4$ times), the combined org. phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:50), yielding, after recrystallization from toluenc, $81 \mathrm{mg}(65 \%)$ of yellowish crystals. M.p. $95-96^{\circ}$. Sublimation ($70^{\circ} / 11$ Torr) yielded pure, white crystals. M.p. 10I-102 ${ }^{\circ}$ UV (dioxane): 300 (2200), 253 (11600), 247 (10900), 212 (15500). IR (KBr); 2900, 2870, 2850, 2770, $1740,1685,1590,1395,1235,1145,995,785,775,745 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.12(s, \mathrm{CHO}) ; 7.77,7.58(2 d$, $J=7.6, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(7)) ; 7.51(t, J=7.6, \mathrm{H}-\mathrm{C}(6)) ; 3.93,3.58\left(2 s, \mathrm{CH}_{2}(1), \mathrm{CH}_{2}(3)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 213.6(s, \mathrm{CO}) ; 191.9(d) ; 139.6,139.0,132.5(3 s) ; 131.6,130.2,127.9\left(3 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=160\right) ; 43.9,42.9(2 t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=135\right)$. MS $(70 \mathrm{eV}): 160(11), 132(48), 104(78), 78(44), 70(50), 61(80), 45(100)$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$ (160.172): C 74.99, H 5.03; found: C 75.05, H 4.98.

Under the same conditions as for the transformation of $\mathbf{1 3}$ into $\mathbf{2 0}, \mathbf{1 8}$ gave $\mathbf{2 0}$ in $\mathbf{6 9 \%}$ yield.

Methyl 7-Formyl-2,3-dihydro-2-oxo-1H-indene-5-carboxylate (21). Anh. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}(403 \mathrm{mg}, 0.73$ mmol) was added portionwise to a stirred soln. of $14\left(78 \mathrm{mg}, 0.21 \mathrm{mmol}\right.$) in anh. acetone (8 ml). After 50 min at 20°, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}, 3$ times $)$. After drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated and the residue purified by chromatography on a column of silica gel ($\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 10$), yielding $22.5 \mathrm{mg}(32 \%)$ of yellowish crystals. M.p. $136-150^{\circ}$ (dec.). UV (dioxane): 307 (3400), $299(3400), 258$ (sh, 8300), 252 (sh, 10400), 223 (30700). IR (KBr): 3000, 2960, 1740, 1710, 1680, 1580, 1430, 1390, 1380, 1340, 1300, $1260,1220,1100,1010,980,965 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.16(s, \mathrm{CHO}) ; 8.46,8.25(2 s, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(6))$; $3.99\left(s, \mathrm{COOCH}_{3}\right) ; 3.95,3.63\left(2 s, \mathrm{CH}_{2}(1), \mathrm{CH}_{2}(3)\right) . \mathrm{MS}(70 \mathrm{eV}): 218\left(23, M^{+}\right), 190(100), 187(21), 162(22), 159$ (15), 146 (15), 131 (32), 119 (10), 103 (69), 102 (50), 77 (84). HR-MS (ref.: iodotoluene): $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}{ }^{+}\right.$, calc. 218.0579); 218.0575-218.0597.

In some runs, the methyl acetal 17 of 21 was isolated as a minor compound, which was hydrolyzed into $\mathbf{2 1}$ on standing in CDCl_{3} soln. 17: White crystals. M.p. $102-104^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.25,8.12(2 s, \mathrm{H}-\mathrm{C}(4)$, $\mathrm{H}-\mathrm{C}(6)) ; 5.47(s, \mathrm{CH}-\mathrm{C}(7)) ; 4.02\left(s, \mathrm{COOCH}_{3}\right) ; 3.75,3.67\left(2 s, \mathrm{CH}_{2}(1), \mathrm{CH}_{2}(3)\right) ; 3.40\left(s, 2 \mathrm{CH}_{3} \mathrm{O}\right)$.

REFERENCES

[1] A. A. Pinkerton, P.-A. Carrupt, P. Vogel, T. Boschi, N. H. Thuy, R. Roulet, Inorg. Chim. Acta 1978, 28, 123.
[2] Ph. Vioget, M. Bonivento, R. Roulet, P. Vogel, Helv. Chim. Acta 1984, 67. 1630.
[3] Ph. Vioget, P. Vogel, R. Roulet, Angew. Chem., Int. Ed. 1982, 21, 430.
[4] Ph. Vioget, M. Bonivento, R. Roulet, P. Vogel, Helv. Chim. Acta 1984, 67, 1638.
[5] J.-L. Métral, P. Vogel, Tetrahedron Lett. 1984, 25, 5387.
[6] a) J.-L. Métral, P. Vogel, Helv. Chim. Acta 1985, 68, 334; b) J.-L. Métral, J. Lauterwein, P. Vogel, ibid. 1986, 69, 1287.
[7] W. R. Roth, J. D. Meier, Tetrahedron Lett. 1967, 2053.
[8] L. Mavoungou-Gomès, Bull. Soc. Chim. Fr. 1967, 1753.
[9] E. Bonfantini, P. Vogel, in preparation.
[10] D. Gagnaire, E. Payo-Subiza, Bull. Soc. Chim. Fr. 1963, 2627; C. K. Ramey, D. C. Lini, J. Magn. Reson. 1970, 3, 94; W. L. Nelson, D. R. Alten, J. Heterocycl. Chem. 1972, 9, 561 ; F. Kienzle, Helv. Chim. Acta 1975, 58, 1180 ; C. Mahaim, P. Vogel, ibid. 1982, 65, 866.
[11] E. Meier, A. A. Pinkerton, R. Roulet, P. Vogel, D. Schwarzenbach, J. Organomet. Chem. 1981, 220, 341 ; A. A. Pinkerton, G. Chapuis, P. Vogel, U. Hänish, P. Narbel, T. Boschi, R. Roulet, Inorg. Chim. Acta 1979, 35, 197.
[12] Y. Shvo, E. Hazum, J. Chem. Soc., Chem. Commun. 1974, 336.
[13] G.F. Emerson, J. E. Mahler, R. Kochhar, R. Pettit, J. Org. Chem. 1964, 29, 3620; C.H. Mauldin, E. R. Biehl, P. C. Reeves, Tetrahedron Lett. 1972, 2955.
[14] J. Ioset, R. Roulet, Helv. Chim. Acta 1985, 68, 236.
[15] B. F. G. Johnson, J. Lewis, D. T. Thompson, Tetrahedron Lett. 1974, 3789.
[16] C. W. Yip, P. Au, T.-Y. Luh, S. W. Tam, J. Organomet. Chem. 1979, 175, 221.
[17] L. Lombardo, D. Wege, S. P. Wilkinson, Aust. J. Chem. 1974, 27, 143.
[18] F.-W. Grevels, K. Schneider, Angew. Chem., Int. Ed. 1981, 20, 410; S. Sarel, G. Chriki, J. Org. Chem. 1978, 43, 4971; R. Aumann, J. Knecht, Chem. Ber. 1978, 111, 3927; P. Eilbracht, P. Dahler, ibid. 1980, 113, 542.
[19] A.M. Horton, D. M. Hollinshead, S. V. Ley, Tetrahedron 1984, 40, 1737; see also: G. D. Annis, S. V. Ley, C. R. Self, R. Sivaramakrishnan, J. Chem. Soc., Perkin Trans. 1 1980, 270; G. D. Annis, S. V. Ley, J. Chem. Soc., Chem. Commun. 1977, 581; R. Aumann, H. Ring. C. Krüger, R. Goddard, Chem. Ber. 1979, 112, 3644; G. D. Annis, S. V. Ley, C. R. Self, R. Sivaramakrishnan, D. J. Williams, J. Chem. Soc., Perkin Trans. l 1982, 1355.
[20] See also: R.F. Heldeweg, H. Hogeveen, J. Am. Chem. Soc. 1976, $98,6040$.
[21] B. F. G. Johnson, J. Lewis, D. J. Thompson, B. Heil, J. Chem. Soc., Dalton Trans. 1975, 567; B. F. G. Johnson, D. D. Karlin, J. Lewis, J. Organomet. Chem. 1978, 145, C 23; B. F. G. Johnson, K. D. Karlin, J. Lewis, ibid. 1979, 174, C 29; P. Eilbracht, R. Jelitte, P. Trabold, Chem. Ber. 1986, 119, 169, and ref. cit. therein; M. Franck-Neumann, Pure Appl. Chern. 1983, 55, 1715.
[22] T. Ishizu, K. Harano, M. Yasuda, K. Kanematsu, Tetrahedron Lett. 1981, 1601 ; see also: K. M. Nicholas, M. Rosenblum, J. Am. Chem. Soc. 1973, 95, 4449; S. N. Anderson, C. W. Fong, M. D. Johnson, J. Chem. Soc., Chem. Commun. 1973, 163; R.H. Magnuson, R. Meirowitz, S. S. Zulu, W. P. Giering, J. Am. Chem. Soc. 1982, 104, 5790; Organometalics 1983, 2, 460.
[23] W.H. Hersch, R. G. Bermann, J. Am. Chem. Soc. 1981, 103, 6992.
[24] Beilstein 7, 363.

[^0]: ${ }^{1}$) Part of the Ph . D. thesis of E. Bonfantini, in preparation.
 ${ }^{2}$) Part of the Ph. D. thesis of J.-L. Métral, Ecole polytechnique fédérale de Lausanne, Dec. 1984. Present address: Ciba-Geigy $A G, \mathrm{CH}-1870$ Monthey.

